Table of LaPlace Transforms

<table>
<thead>
<tr>
<th>(f(t))</th>
<th>(\mathcal{L} { f(t) } = F(s))</th>
<th>(f(t))</th>
<th>(\mathcal{L} { f(t) } = F(s))</th>
<th>(f(t))</th>
<th>(\mathcal{L} { f(t) } = F(s))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\frac{1}{s})</td>
<td>14. (\sinh^2 kt)</td>
<td>(\frac{2k^2}{s(s^2 - 4k^2)})</td>
<td>27. (t \cosh kt)</td>
<td>(\frac{s^2 + k^2}{(s^2 + k^2)^2})</td>
</tr>
<tr>
<td>2</td>
<td>(\frac{1}{s^2})</td>
<td>15. (\cosh^2 kt)</td>
<td>(\frac{s^2 - 2k^2}{s(s^2 - 4k^2)})</td>
<td>28. (e^{at} - e^{bt})</td>
<td>(\frac{1}{a-b})</td>
</tr>
<tr>
<td>3</td>
<td>(\frac{n!}{s^{n+1}}), (n) is a positive integer</td>
<td>16. (te^{at})</td>
<td>(\frac{1}{(s-a)^2})</td>
<td>29. (ae^{at} - be^{bt})</td>
<td>(\frac{s}{(s-a)(s-b)})</td>
</tr>
<tr>
<td>4</td>
<td>(\sqrt{\frac{\pi}{2}})</td>
<td>17. (t^{n}e^{at})</td>
<td>(\frac{n!}{(s-a)^{n+1}}), (n) is a positive integer</td>
<td>30. (1 - \cos kt)</td>
<td>(\frac{k^2}{s(s^2 + k^2)})</td>
</tr>
<tr>
<td>5</td>
<td>(\frac{\sqrt{\pi}}{2s^{3/2}})</td>
<td>18. (e^{at} \sin kt)</td>
<td>(\frac{k}{(s-a)^2 + k^2})</td>
<td>31. (kt - \sin kt)</td>
<td>(\frac{k^3}{s^2(s^2 + k^2)})</td>
</tr>
<tr>
<td>6</td>
<td>(\frac{\Gamma(\alpha+1)}{s^{\alpha+1}}), (\alpha > -1)</td>
<td>19. (e^{at} \cos kt)</td>
<td>(\frac{s-a}{(s-a)^2 + k^2})</td>
<td>32. (\frac{a \sin bt - b \sin at}{ab(a^2 - b^2)})</td>
<td>(\frac{1}{(s^2 + a^2)(s^2 + b^2)})</td>
</tr>
<tr>
<td>7</td>
<td>(\sin kt)</td>
<td>20. (e^{at} \sinh kt)</td>
<td>(\frac{k}{(s-a)^2 - k^2})</td>
<td>33. (\cos bt - \cos at)</td>
<td>(\frac{s}{(s^2 + a^2)(s^2 + b^2)})</td>
</tr>
<tr>
<td>8</td>
<td>(\cos kt)</td>
<td>21. (e^{at} \cosh kt)</td>
<td>(\frac{s-a}{(s-a)^2 - k^2})</td>
<td>34. (\sin kt \sinh kt)</td>
<td>(\frac{2k^2s}{s^4 + 4k^4})</td>
</tr>
<tr>
<td>9</td>
<td>(\sin^2 kt)</td>
<td>22. (\frac{2k^2}{s(s^2 + 4k^2)})</td>
<td>22. (t \sin kt)</td>
<td>(\frac{2ks}{(s^2 + k^2)^2})</td>
<td>35. (\sin kt \cos kt)</td>
</tr>
<tr>
<td>10</td>
<td>(\cos^2 kt)</td>
<td>(\frac{s^2 + 2k^2}{s(s^2 + 4k^2)})</td>
<td>23. (\frac{s^2 - k^2}{s(s^2 + k^2)^2})</td>
<td>36. (\cos kt \sinh kt)</td>
<td>(\frac{k(s^2 - 2k^2)}{s^4 + 4k^4})</td>
</tr>
<tr>
<td>11</td>
<td>(\frac{1}{s-a})</td>
<td>24. (\sin kt + kt \cos kt)</td>
<td>(\frac{2kss}{(s^2 + k^2)^2})</td>
<td>37. (\cos kt \cosh kt)</td>
<td>(\frac{s^3}{s^4 + 4k^4})</td>
</tr>
<tr>
<td>12</td>
<td>(\frac{k}{s^2 - k^2})</td>
<td>25. (\sin kt - kt \cos kt)</td>
<td>(\frac{2kss^3}{(s^2 + k^2)^2})</td>
<td>38. (J_0(kt))</td>
<td>(\frac{1}{\sqrt{s^2 + k^2}})</td>
</tr>
<tr>
<td>13</td>
<td>(\frac{s}{s^2 - k^2})</td>
<td>26. (\frac{2ks}{(s^2 - k^2)^2})</td>
<td>26. (t \sinh kt)</td>
<td></td>
<td>(\frac{e^{bt} - e^{at}}{t})</td>
</tr>
</tbody>
</table>
Table of LaPlace Transforms

<table>
<thead>
<tr>
<th>$f(t)$</th>
<th>$\mathcal{L}{f(t)} = F(s)$</th>
<th>$f(t)$</th>
<th>$\mathcal{L}{f(t)} = F(s)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2(1-\cos kt)$</td>
<td>$\frac{1}{t}\ln\left(\frac{s^2 + k^2}{s^2}\right)$</td>
<td>$\delta(t)$</td>
<td>1</td>
</tr>
<tr>
<td>$2(1-\cosh kt)$</td>
<td>$\frac{1}{t}\ln\left(\frac{s^2 - k^2}{s^2}\right)$</td>
<td>$\delta(t-t_0)$</td>
<td>e^{-as}</td>
</tr>
<tr>
<td>$\frac{\sin at}{t}$</td>
<td>$\arctan\left(\frac{a}{s}\right)$</td>
<td>$e^{at}f(t)$</td>
<td>$F(s-a)$</td>
</tr>
<tr>
<td>$\frac{\sin at \cos bt}{t}$</td>
<td>$\frac{1}{2}\arctan\left(\frac{a+b}{s}\right) + \frac{1}{2}\arctan\left(\frac{a-b}{s}\right)$</td>
<td>$f(t-a)\mathcal{U}(t-a)$</td>
<td>$e^{-as}F(s)$</td>
</tr>
<tr>
<td>$\frac{1}{\sqrt{\pi t}}e^{-\frac{a^2}{4t}}$</td>
<td>$\frac{e^{-\frac{as}{\sqrt{s}}}}{\sqrt{s}}$</td>
<td>$\mathcal{U}(t-a)$</td>
<td>$\frac{e^{-as}}{s}$</td>
</tr>
<tr>
<td>$\frac{a}{2\sqrt{\pi t}}e^{-\frac{a^2}{4t}}$</td>
<td>$e^{-\frac{as}{\sqrt{s}}}$</td>
<td>$f^{(n)}(t)$</td>
<td>$s^nF(s) - s^{(n-1)}f(0) - \ldots - f^{(n-1)}(0)$</td>
</tr>
<tr>
<td>$\text{erfc}\left(\frac{a}{2\sqrt{t}}\right)$</td>
<td>$\frac{e^{-\frac{as}{\sqrt{s}}}}{s}$</td>
<td>$t^n f(t)$</td>
<td>$(-1)^n \frac{d^n}{ds^n} F(s)$</td>
</tr>
<tr>
<td>$2\sqrt{\frac{t}{\pi}}e^{-\frac{a^2}{4t}} - a \cdot \text{erfc}\left(\frac{a}{2\sqrt{t}}\right)$</td>
<td>$\frac{e^{-\frac{as}{\sqrt{s}}}}{s\sqrt{s}}$</td>
<td>(\int_0^t f(\tau)g(t-\tau)d\tau)</td>
<td>$F(s)G(s)$</td>
</tr>
<tr>
<td>$e^{ab}e^{b\tau} \cdot \text{erfc}\left(b\sqrt{t} + \frac{a}{2\sqrt{t}}\right)$</td>
<td>$\frac{e^{-\frac{as}{\sqrt{s}}}}{\sqrt{s}\left(\sqrt{s} + b\right)}$</td>
<td>$\frac{b\cdot e^{-\frac{as}{\sqrt{s}}}}{\sqrt{s}\left(\sqrt{s} + b\right)}$</td>
<td>$b\cdot e^{-\frac{as}{\sqrt{s}}}$</td>
</tr>
</tbody>
</table>