LOAN PAYMENTS

\[P = \text{amount borrow (loan principal)} \]
\[n = \text{number of payments per year} \]
\[PMT = \text{regular payment amount} \]
\[APR = \text{annual percentage rate} \]
\[Y = \text{loan term in years} \]

Formula

\[PMT = \frac{P \times \left(\frac{APR}{n} \right)^{-nY}}{1 - \left(1 + \frac{APR}{n}\right)^{-nY}} \]

Example

You have student loans totaling $8,500 when you graduate from Northern Arizona University. The APR is 8.5% and the loan term is 10 years.

\[PMT = \frac{8500 \times \left(\frac{0.085}{12} \right)^{-12 \times 10}}{1 - \left(1 + \frac{0.085}{12}\right)^{-12 \times 10}} = $105.39 \]

Total payment over the lifetime of the loan =

\[$105.39 \times \frac{12 \text{ months}}{\text{month}} \times 10 \frac{\text{years}}{\text{year}} = $12,646.80 \]

Using TVM Solver (TI-83:FINANCE; TI-83+, TI-84:APPS)

1. Press \(\text{2nd} \) \(x^{-1} \) (FINANCE) or \(\text{APPS} \)
2. Choose 1: TVM Solver
3. Enter \(N = 12 \times 10 = 120 \)
 \(I\% = 8.5 \)
 \(PV = -8500 \) (calculator considers this an outflow of cash)
 \(PMT = 0 \)
 \(FV = 0 \)
 \(P/Y = 12 \) (number of payments per year)
 \(C/Y = 12 \) (number of compounding periods per year)
 \(PMT = \text{highlight END for end of month deposits} \)
4. Arrow up to PMT since we are looking for the monthly payment
5. Press \(\text{ALPHA} \) \(\text{ENTER} \) (SOLVE).
 • \(\text{PMT} = $105.39 \)

Total interest using the TVM Solver.

6. Press \(\text{2nd} \) \(\text{Mode} \) (Quit)
7. Press \(\text{2nd} \) \(x^{-1} \) (FINANCE) or \(\text{APPS} \)
8. Choose A: \(\Sigma \text{Int} \)
9. Enter: 1,120 then press ENTER

Total interest = $4,146.54

(The small difference with the value in column 2 is due to the rounding in those calculations)
<table>
<thead>
<tr>
<th>End of</th>
<th>Interest (decrease)</th>
<th>Payment toward principal (increase)</th>
<th>New principal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Month 1</td>
<td>$\frac{.085}{12} \times $8,500 = 60.21</td>
<td>$$105.39 – $60.21 = 45.18</td>
<td>$$8,500 – $45.18 = $8,454.82$</td>
</tr>
<tr>
<td>Month 2</td>
<td>$\frac{.085}{12} \times $8,454.82 = 59.89</td>
<td>$$105.39 – $59.89 = 45.50</td>
<td>$$8,454.82 – $45.50 = $8,409.32$</td>
</tr>
<tr>
<td>Month 3</td>
<td>$\frac{.085}{12} \times $8,409.32 = 59.57</td>
<td>$$105.39 – $59.57 = 45.82</td>
<td>$$8,409.32 – $45.82 = $8,363.50$</td>
</tr>
</tbody>
</table>

Principal and interest payment portions change as the loan is paid down.