Methods of Solution of Selected Differential Equations
Carol A. Edwards
Chandler-Gilbert Community College

Equations of Order One: $Mdx + Ndy = 0$

1. Separate variables.

2. M, N homogeneous of same degree:
 Substitute $y = vx$ or $x = vy$

 $dy = vdx + xdv$
 $dx = vdy + ydv$

 and then separate variables.

3. Exact: \[\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} \]
 Solve \(\frac{\partial F}{\partial x} = M \) for F(x,y) including f(y) as constant term.
 Then compute \(\frac{\partial F}{\partial y} = N \) to find f(y).

 Solution is $F(x,y) = c$.

 Alternatively, start with \(\frac{\partial F}{\partial y} = N \).

4. Linear: $\frac{dy}{dx} + P(x)y = Q(x)$

 IF = \exp(\int Pdx)

 Multiply both sides of the equation by IF and result is exact.

 Left hand side will be \(\frac{d}{dx} (IF \cdot y) \)

5. The orthogonal trajectories to the family that has differential equation $Mdx + Ndy = 0$ have differential equation $Ndx - Mdy = 0$.

6. IF by inspection:

 Look for \(d(xy) = xdy + ydx \)
 \(d(\frac{y}{x}) = \frac{ydx - xdy}{x^2} \)
 \(d(\tan^{-1}\frac{y}{x}) = \frac{xdy - ydx}{x^2 + y^2} \)

 It may help to group terms of like degree.

7. IF for certain equations that are not homogeneous, not exact, and not linear:
 a. \(\frac{1}{N} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right) = f(x) \), a function of x alone.

 IF = \exp(\int f(x) dx). Resulting equation is exact.

 b. \(\frac{1}{M} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right) = g(y) \), a function of y alone.

 IF = \exp(- \int g(y) dy). Resulting equation is exact.

8. Substitution suggested by the equation:
If an expression appears more than once, substituting a single variable for it may reduce the equation to a recognizable form.

9. Bernoulli: \(y' + P(x)y = Q(x)y^n \)
Substitute \(z = y^{1-n} \) and the resulting equation will be linear in \(z \).

10. Coefficients both linear:
\[
(a_1x + b_1y + c_1)dx + (a_2x + b_2y + c_2)dy = 0
\]
Consider lines \(a_1x + b_1y + c_1 = 0 \)
\[
a_2x + b_2y + c_2 = 0
\]
a. If lines intersect at \((h,k) \), substitute \(x = u + h, y = v + k \)
to get \((a_1u + b_1v)du + (a_2u + b_2v)dv = 0 \) which is homogeneous.

b. If lines are parallel or coincide, use a substitution for recurring expression. (See 8)

Linear Differential Equation:
\[
b_0(x)\frac{d^n}{dx^n}y + b_1(x)\frac{d^{n-1}}{dx^{n-1}}y + \ldots + b_{n-1}(x)dy + b_n(x)y = R(x)
\]
1. The functions \(f_1, f_2, \ldots, f_n \) are linearly independent when
 \[
c_1f_1(x) + c_2f_2(x) + \ldots + c_nf_n(x) = 0 \text{ implies } c_1 = c_2 = \ldots = c_n = 0.
\]
2. The functions \(f_1, f_2, \ldots, f_n \) are linearly dependent if there exist constants \(c_1, c_2, \ldots, c_n \), not all zero, such that
 \[
c_1f_1(x) + c_2f_2(x) + \ldots + c_nf_n(x) = 0 \text{ identically on } a \leq x \leq b.
\]
3. The Wronskian of \(f_1, f_2, \ldots, f_n \) is
 \[
 \begin{vmatrix}
 f_1 & f_2 & f_3 & \ldots & f_n \\
 f_1' & f_2' & f_3' & \ldots & f_n' \\
 f_1'' & f_2'' & f_3'' & \ldots & f_n'' \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 f_1^{(n-1)} & f_2^{(n-1)} & f_3^{(n-1)} & \ldots & f_n^{(n-1)}
 \end{vmatrix}

4. Theorem: If on \((a,b) \), \(b_0(x) \neq 0, b_1, b_2, \ldots, b_n \) continuous,
 and \(y_1, y_2, \ldots, y_n \) are solutions of
 \[
b_0y^{(n)} + b_1y^{(n-1)} + \ldots + b_{n-1}y' + b_ny = 0
 \]
 then \(y_1, y_2, \ldots, y_n \) are linearly independent if and only if the
 Wronskian of \(y_1, y_2, \ldots, y_n \) is not zero on \((a,b) \).

5. If \(y_1, y_2, \ldots, y_n \) are linearly independent solutions of the homogeneous equation,
 \[
b_0y^{(n)} + b_1y^{(n-1)} + \ldots + b_{n-1}y' + b_ny = 0
 \]
 then the general solution of this equation is
 \[
y = c_1y_1 + c_2y_2 + \ldots + c_ny_n.
 \]
6. The general solution of the equation
\[b_0y^{(n)} + b_1y^{(n-1)} + \ldots + b_n y' + b_n y = R(x) \]
is \[y = y_c + y_p, \] where \(y_c = c_1y_1 + c_2y_2 + \ldots + c_n y_n, \) the complementary function; \(y_1, y_2, \ldots, y_n \) are linearly independent solutions of the homogeneous equation; and \(c_1, c_2, \ldots, c_n \) are arbitrary constants; and \(y_p \) is any particular solution of the given nonhomogeneous equation.

7. A differential operator of order \(n \)
\[A = a_0D^n + a_1D^{n-1} + \ldots + a_{n-1}D + a_n \] where \(D^k y = \frac{d^k y}{dx^k} \)

8. Properties of differential operators:
 a. If \(f(D) \) is a polynomial in \(D \), then \(f(D) \) \([e^{mx}] = e^{mx}f(m)\).
 b. If \(f(D) \) is a polynomial in \(D \) with constant coefficients, \(e^{ax}f(D)y = f(D-a) \) \([e^{ax}y]\) (“exponential shift”)
 c. \((D - m)^n(x^k e^{mx}) = 0 \) for \(k = 0, 1, \ldots, (n-1)\).

Linear Equations with Constant Coefficients:
\[a_0y^{(n)} + a_1y^{(n-1)} + \ldots + a_{n-1}y' + a_n y = R(x) \]
i.e., \(f(D)y = R(x) \)

1. The auxiliary equation associated with \(f(D)y = 0 \) is \(f(m) = 0 \).
 a. \(f(m) = 0 \) has distinct real roots \(m_1, m_2, \ldots, m_n \):
 \[y_c = c_1e^{m_1 x} + c_2e^{m_2 x} + \ldots + c_n e^{m_n x} \]
 b. \(f(m) = 0 \) has repeated real roots. For each set of repetitions,
 \[a, b, \ldots, b, \] the solutions are
 \[c_1 e^{ax}, c_2 xe^{ax}, c_3 x^2 e^{ax}, \ldots, c_k x^{k-1} e^{ax} \]
 c. \(f(m) = 0 \) has distinct imaginary roots:
 For \(m = a \pm bi \), \(y = c_1 e^{ax} \cos bx + c_2 e^{ax} \sin bx \)
 d. \(f(m) = 0 \) has repeated imaginary roots. For example for
 \(a \pm bi, a \pm bi \), \(y = (c_1 + c_2x)e^{ax} \cos bx + (c_3 + c_4x)e^{ax} \sin bx \).
2. Method of undetermined coefficients:
 a. \(m_1, m_2, \ldots, m_n \) solutions of the auxiliary equation, so
 \[y_c = c_1 y_1 + \ldots + c_n y_n \]
 b. Assuming \(R(x) \) is itself a particular solution of some homogeneous differential
 equation with constant coefficients which has roots \(m_1', m_2', \ldots, m_k' \) for its
 auxiliary equation. Write \(y_p \) from \(m_1', m_2', \ldots, m_k' \) being careful about any
 repetitions of \(m' \)-values with \(m \)-values. Substitute this \(y_p \) in the original equation,
 \(f(D)y = R(x) \) and equate corresponding coefficients.
 c. General solution: \(y = y_c + y_p \).

3. Solutions by inspection:
 a. If \(R(x) = \text{constant} \) and \(a_n \neq 0 \) then \(y_p = \frac{R(x)}{a_n} \)
 b. If \(R(x) = \text{constant} \) and \(a_n = 0 \) with \(y^{(k)} \) the lowest-order derivative that actually
 appears, then \(y_p = R(x) \cdot x^k \frac{k!}{a_{n-k}} \)

4. If \(y_1 \) is a particular solution of \(f(D)y = R_1(x) \) and \(y_2 \) is a particular solution of
 \(f(D)y = R_2(x) \), then \(y_p = y_1 + y_2 \) is a particular solution of \(f(D)y = R_1(x) + R_2(x) \).

Linear Equations with Variable or Constant Coefficients

\((b_0D^n + b_1D^{n-1} + \ldots + b_{n-1}D + b_n)y = R(x), b_i \) is not necessarily constant.

1. Reduction of order (d’Alembert): \(y'' + py' + qy = R \)
 If \(y = y_1 \) is a solution of the corresponding homogeneous equation:
 \(y'' + py' + qy = 0 \).
 Let \(y = vy_1, v \) variable, and substitute into original equation and simplify.
 Set \(v' = w \) and the resulting equation is a linear equation of first order in \(w \). Find the
 IF and solve for \(w \). Then since \(v' = w \), find \(v \) by integration. This gives \(y = vy_1 \).
2. Variation of parameters (Lagrange)

a. Order two: \(y'' + py' + qy = R(x) \)

 If \(y_c = c_1y_1 + c_2y_2 \), set \(y_p = A(x)y_1 + B(x)y_2 \), then find \(A \) and \(B \) so that

 \[
 \begin{cases}
 A'y_1 + B'y_2 = 0 \\
 A'y_1' + B'y_2' = R(x)
 \end{cases}

 Solve the system for \(A' \) and \(B' \), then for \(A \) and \(B \) by integration.

 Then \(y_p = A(x)y_1 + B(x)y_2 \).

b. Order three: \(y''' + py'' + qy' + r = s(x) \)

 If \(y_c = c_1y_1 + c_2y_2 + c_3y_3 \) then set \(y_p = A(x)y_1 + B(x)y_2 + C(x)y_3 \).

 \[
 \begin{cases}
 A'y_1 + B'y_2 + C'y_3 = 0 \\
 A'y_1' + B'y_2' + C'y_3' = 0 \\
 A'y_1'' + B'y_2'' + C'y_3'' = s(x)
 \end{cases}

 Solve the system for \(A', B', \) and \(C' \), then for \(A, B, \) and \(C \) by integration.

 Then \(y_p = A(x)y_1 + B(x)y_2 + C(x)y_3 \).

Inverse Differential Operators

1. Exponential shift: \(e^{ax}f(D)y = f(D-a)[e^{ax}y] \)

2. Evaluation of \(\frac{1}{f(D)}e^{ax} \)

 a. If \(f(a) \neq 0 \) then \(\frac{1}{f(D)}e^{ax} = \frac{e^{ax}}{f(a)} \)

 b. If \(f(a) = 0 \) then \(\frac{1}{f(D)}e^{ax} = \frac{x^n e^{ax}}{n! \phi(a)} \), \(\phi(a) \neq 0 \).

3. Evaluation of \((D^2 + a^2)^{-1}\sin ax \) and \((D^2 + a^2)^{-1}\cos ax \)

 a. If \(a \neq b \), \(\frac{1}{D^2 + a^2} \sin bx = \frac{\sin bx}{a^2 - b^2} \)

 \(\frac{1}{D^2 + a^2} \cos bx = \frac{\cos bx}{a^2 - b^2} \)

 b. If \(a = b \), \(\frac{1}{D^2 + a^2} \sin ax = \frac{-x \cos ax}{2a} \)

 \(\frac{1}{D^2 + a^2} \cos ax = \frac{x \sin ax}{2a} \)
Laplace Transform

1. **Definition:** Laplace transform of \(F(t) = L\{F(t)\} = \int_0^\infty e^{-st}F(t)\,dt = f(s) \)

2. \(L \) is a linear transformation: \(c_1, c_2 \) constants
 \[L\{c_1F_1 + c_2F_2\} = c_1L\{F_1\} + c_2L\{F_2\}. \]

3. Transforms of elementary functions.
 a. \(L\{e^{kt}\} = \frac{1}{s-k}, \quad s > k \)
 b. \(L\{\sin kt\} = \frac{k}{s^2 + k^2}, \quad s > 0 \)
 c. \(L\{\cos kt\} = \frac{s}{s^2 + k^2}, \quad s > 0 \)
 d. \(L\{t^n\} = \frac{n!}{s^{n+1}}, \quad s > 0, \ n \) positive integer.

4. **Definition:** A function \(F(t) \) is **sectionally continuous** over \([a,b]\) if \([a,b]\) can be divided into a finite number of sub-intervals \([c,d]\) such that in each subinterval:
 (1) \(F(t) \) is continuous on \([c,d]\), and
 (2) \(\lim_{t \to c^+} F(t) \) and \(\lim_{t \to d^-} F(t) \) exist.

5. **Definition:** The function \(F(t) \) is of **exponential order** as \(t \to \infty \) if there exist constants \(M, b, \) and a fixed \(t_0 \) such that \(|F(t)| < Me^{bt} \) for \(t \geq t_0. \)
 a. **Note:** a bounded function is of exponential order as \(t \to \infty \)
 b. **Note:** if there is a \(b \) such that \(\lim_{t \to \infty} [e^{-bt}F(t)] \) exists, then \(F(t) \) is of exponential order as \(t \to \infty \).

6. **Definition:** A function of **Class A** is any function that is
 (1) sectionally continuous over every finite interval in the range \(t \geq 0, \) and
 (2) of exponential order as \(t \to \infty \).

7. **Theorem:** If \(F(t) \) is a function of Class A, then \(L\{F(t)\} \) exists.
8. Solution of initial value problems.

Theorem: If \(F(t), F'(t), \ldots, F^{(n-1)}(t) \) are continuous for \(t \geq 0 \) and of exponential order as \(t \to \infty \) and if \(F^{(n)}(t) \) is of Class A, then

\[
L\{F^{(n)}(t)\} = s^nL\{F(t)\} - \sum_{k=0}^{n-1} s^{n-1-k}F^{(k)}(0).
\]

In particular

\(n = 1: \ L\{F'(t)\} = sL\{F(t)\} - F(0) \)

\(n = 2: \ L\{F''(t)\} = s^2L\{F(t)\} - sF(0) - F'(0) \)

\(n = 3: \ L\{F'''(t)\} = s^3L\{F(t)\} - s^2F(0) - sF'(0) - F''(0) \)

Theorem: If \(F(t) \) is of exponential order as \(t \to \infty \) and \(F(t) \) is continuous for \(t \geq 0 \) except for a finite jump at \(t = t_1 \), and if \(F'(t) \) is of Class A, then from \(L\{F(t)\} = f(s) \), it follows that \(L\{F'(t)\} = sf(s) - F(0) - \exp(-st_1)[F(t_1^+) - F(t_1^-)] \)

Theorem: If \(F(t) \) is of Class A, then for every positive integer \(n \),

\[
\frac{d^n}{ds^n}f(s) = L\{(-t)^nF(t)\} \quad \text{where} \quad f(s) = L\{F(t)\}.
\]

10. Transform of a periodic function.

Theorem: If \(F(t) \) is periodic with period \(\omega \) and \(F(t) \) has a Laplace transform then \(L\{F(t)\} = \frac{\int_0^\omega e^{-st}F(t)\,dt}{1 - e^{-\omega s}} \)

11. **Definition:** If \(L\{F(t)\} = f(s) \) then \(F(t) \) is an **inverse transform** of \(f(s) \) and \(F(t) = L^{-1}\{f(s)\} \).

12. \(L^{-1} \) is a linear transformation.

13. **Theorem:** \(L^{-1}\{f(s)\} = e^{as}L^{-1}\{f(s-a)\} \).

Gamma Function

1. **Definition:** \(\Gamma(x) = \int_0^\infty e^{-\beta}\beta^{x-1}d\beta, \ x > 0 \).

2. **Theorem:** For all \(x > 0 \), \(\Gamma(x+1) = x\Gamma(x) \).

3. **Theorem:** \(\Gamma(n+1) = n! \) if \(n \) is a positive integer.

4. **Theorem:** \(L\{t^n\} = \frac{\Gamma(x+1)}{s^{x+1}}, \ s > 0, \ x > -1 \).