Factoring Polynomials

		EXAMPLES
	STEP 1 : Greatest Common Factor	
GCF	Factor out the greatest common factor.	$6x^{3} + 12x^{2}y = 6x^{2} (x + 2y)$ 5x - 5 = 5 (x - 1) $7x^{2} + 2y^{2} = 1 (7x^{2} + 2y^{2})$ 2x (x - 3) - (x - 3) = (x - 3) (2x - 1)
	STEP 2 : Count Terms	
Two Terms (Binomials)	1) Difference of two squares. a ² - b ² = (a + b) (a - b) or (a - b) (a + b)	$4 - 9x^{2} = (2)^{2} - (3x)^{2}$ $= (2 + 3x) (2 - 3x)$
		$ \begin{aligned} x^4 &-1 &= (x^2)^2 - (1)^2 \\ &= (x^2 + 1) (x^2 - 1) \\ &= (x^2 + 1) (x - 1) (x + 1) \end{aligned} $
	2) Difference of two cubes. a ³ - b ³ = (a - b) (a ² + ab + b ²)	$8x^3 - 27 = (2x)^3 - (3)^3$ = (2x - 3) ((2x) ² + (2x)(3) + (3) ²) = (2x - 3) (4x ² + 6x + 9)
		$y^3 - 1 = (y)^3 - (1)^3$ = (y - 1) (y ² + y + 1)
	3) Sum of two cubes a ³ + b ³ = (a + b) (a ² - ab + b ²)	$8x^3 + 27 = (2x)^3 + (3)^3$ = (2x + 3) ((2x)^2 - (2x)(3) + (3)^2) = (2x + 3) (4x^2 - 6x + 9)
		$y^3 + 1 = (y)^3 + (1)^3$ = (y + 1) (y ² - y + 1)
Three Terms (Trinomials)	1) Leading coefficient is 1. x ² + bx + c Find two integers whose product = c and whose sum = b	$x^2 - 5x - 24$ Find two integers whose product = -24 and whose sum = -5. -8-3 = -24 and -8 + 3 = -5 so, $x^2 - 5x - 24 = (x - 8) (x + 3)$
		$x^2 + x - 12$ Find two integers whose product = -12 and whose sum = 1. $4 \cdot (-3) = -12$ and $4 + (-3) = 1$, so, $x^2 + x - 12 = (x + 4) (x - 3)$.
		$x^{2} - 5x + 6$ Find two integers whose product = 6 and whose sum = -5. (-3).(-2) = 6 and (-3) + (-2) = -5, so, x^{2} - 5x + 6 = (x - 3) (x - 2).

Leading coefficient is -1.	$-x^{2} + 5x + 24$
	$= -(x^2 - 5x - 24)$
$-x^{2}$ + bx + c factor out -1 first.	= -(x - 8) (x + 3)
-1 (x ² - bx - c) then factor (x ² - bx - c)	
using step 1 above.	
	$-x^{2} + 5x - 6$
	$= -(x^2 - 5x + 6)$
	= -(x - 3) (x - 2)
 3) Leading coefficient is not 1 or -1. ax² + bx + c , a ≠ 1 , -1 i) you may use your calculator to check if this is factorable. Find the <u>zeros.</u> If the zeros are integers or rational numbers, then the given trinomial is factorable. Otherwise, the trinomial is <u>prime.</u> 	$18x^{2} + 3x - 10$ Zeros (by calculator) are 2/3 and -5/6, so this polynomial is factorable. The factors are (3x - 2) and (6x + 5). So, 18x^{2} + 3x - 10 = (3x - 2) (6x + 5). On the other hand, 18x^{2} + 3x + 10 has imaginary zeros and, 5x^{2} - 10x + 3 has irrational zeros so both are prime.
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 ii) <u>ac - method</u>: ax² + bx + c Find the product of the coefficients a and c. Then find two integers whose product = ac and whose sum = b. Rewrite the middle term replacing b by the sum of the two integers. Factor the resulting four-term polynomial by grouping. (See section below on factoring four-term polynomials.) 	$18x^{2} + 3x - 10$ ac = (18) (-10) = -180 Find two integers whose product = -180 and whose sum = 3. (15) (-12) = -180 15 + (-12) = 3 so, 18x^{2} + 3x - 10 = 18x^{2} + 15x - 12x - 10 = 3x (6x + 5) - 2 (6x + 5) by grouping = (6x + 5) (3x - 2) You may organize the terms in a box and find the greatest common factor of each row and each column, factoring out leading minus signs. $\frac{1}{1.12x 1 - 10}$ $\frac{1}{1.12x 1 - 10}$
	-2 $ -12x -10$ so, $18x^2 + 3x - 10 = (3x - 2) (6x + 5)$

	iii) Trial and error method ax² + bx + c	12x ² + 43x + 35	
	Write possible factorizations of a and of c .	12 = 12·1 = 6·2	35 = 35·1 = 5·7
	Find the sum of the outer and inner products. We need this sum to equal b x.	= 4.3	- 0 1
	If b and c are both positive, the factors	(12x + 35) (x + 1) 35x	(12x + 1) (x + 35) x
	have only positive coefficients.	12x 35x + 12x = 47x ≠ 43x	420x x + 420x = 421x ≠ 43x
		(12x + 5) (x + 7) 5x	(12x + 7) (x + 5) 7x
		84x	60x
		5x + 84x = 89x ≠ 43x	7x + 60x = 67x ≠ 43x
		(6x + 5) (2x + 7) 10x	(6x + 7) (2x + 5) 14x
		42x	30x
		10x + 42x = 52x ≠ 43x	14x + 30x = 44x ≠ 43x
		(4x + 7) (3x + 5) 21x	(4x + 5) (3x + 7) 15x
		20x	28x
		$21x + 20x = 41x \neq 43x$	15x + 28x = 43x
		so, 12x² + 43x + 35 =	(4x + 5) (3x + 7)
	****	ı xxxxxxxxxxxxxxxxxxxxxx I	*****
	If b is positive and c is negative, one of the factors of c must be negative and the sum	18x² -	+ 3x - 10
of the outside and inside products m positive.	of the outside and inside products must be positive.	18 = 18.1 - $-7= 9.2$	$10 = -10 \cdot 1 = 10 \cdot (-1)$ = -5.2 = 5.(-2)
		= 6.3	(1) most likely will not
		work because 3	s will not be a sum.
		(9x - 5) (2x + 2) -10x	(9x - 2) (2x + 5) -4x
		18x	45x
		$-10x + 10x = 0x \neq 3x$	$-4x + 45x = 41x \neq 5x$
		(6x + 5	5) (3x - 2) 15x
		-	12x
		15x + -	12x = 3x
		so, 18x² + 3x - 10 = (6	6x + 5) (3x - 2)

	If b and c are both negative, one of the factors of c must be negative and the sum of the outside and inside products must be negative.	$12x^{2} - 13x - 35$ $12 = 12 \cdot 1 -35 = -35 \cdot 1 = 35 \cdot (-1)$ $= 6 \cdot 2 = -5 \cdot 7 = 5 \cdot (-7)$ $= 4 \cdot 3$ $(6x - 5) (2x + 7) -10x -10x -42x -10x + 42x = 32x \neq -13x$ $(4x - 5) (3x + 7) (4x + 5) (3x - 7) -15x -15x -28x -28x -28x -28x -28x -28x -28x -28$
Four Terms	If there are four terms, consider factoring by grouping the terms into two groups of two terms each. Factor the GCF from each group. If there is then a common binomial factor, factor it out.	$18x^{2} + 3x - 10$ $18x^{2} + 15x - 12x - 10$ $= 3x (6x + 5) - 2(6x + 5)$ $= (6x + 5) (3x - 2)$ You may organize the terms in a box and find the greatest common factor of each row and each column, factoring out leading minus signs. $\frac{-1}{-118x^{2} + 15x}$ $1 - 12x + 10$ $\frac{-16x + 5}{-3x + 18x^{2} + 15x}$ $-2 + -12x + -10$ so, $18x^{2} + 3x - 10 = (3x - 2) (6x + 5)$ $12x^{2} - 28x + 15x - 35$ $= 4x(3x - 7) + 5(3x - 7)$ $= (3x - 7) (4x + 5)$ OR $\frac{-13x + 7}{-4x + 12x^{2} + 28x}$ $+5 + 15x + -35$

	3x³ + 7x² - 15x - 35
	$y^{2}(2y + 7) = F(2y + 7)$
	$= X^{2} (3X + 7) - 5(3X + 7)$
	$= (3X + 7)(X^2 - 5)$
	OP
	OR
	3x -7
	$x^2 3x^3 +7x^2$
	-5 -15x -35
STEP 3 : Factor Completely	
Examine each non-monomial factor	x ⁴ - 81 (Difference of 2 squares)
resulting from the above steps and check if	$= (X^2 + 9) (X^2 - 9)$ (x ² - 9 is also Difference of 2 squares)
it is further factorable	$= (x^{2} + 9) (x + 3) (x - 3)$
	- 4
Repeat this step until each	5x ⁴ - 405
non-monomial factor is <u>prime.</u>	= 5 (x ⁴ - 81)
	$= 5 (x^2 + 9) (x^2 - 9)$
	$= 5 (x^2 + 9) (x - 3) (x + 3)$
	12 6
	x ¹² - y ⁰
	$= (X^{\circ})^2 - (Y^3)^2$
	$= (x^{6} - y^{3}) (x^{6} + y^{3})$
	$= ((x^2)^3 - y^3) ((x^2)^3 + y^3)$
	$= (x^2 - y) (x^4 + x^2y + y^2) (x^2 + y) (x^4 - x^2y + y^2)$
	49.4 109.3 20.2
	$40x + 100x^{\circ} - 30x^{\circ}$
	$= 6x^{2} (8x^{2} + 18x - 5)$
	$= 6x^{2} (8x^{2} + 20x - 2x - 5)$
	$= 6X^{2} (2X + 5) (4X - 1)$
	where
	WHETE
	2x +5
	4x 8x ² +20x
	-1 -2x -5
Noto: Coloulatore with eymbolic manipulation	foatures can factor polynomials directly

Note: Calculators with symbolic manipulation features can factor polynomials directly. Regardless of the method used to factor polynomials, the importance of factors is their use in solving problems.