Interest/Time Value of Money (TVM)

Simple Interest: $A = P + P \cdot$		$P \cdot r \cdot t$	Continuous Interest: $A = P \cdot e^{r \cdot t}$					
Annual Interest:	A = P(1 +	$(-r)^t$	Annual % Yield:	$APY = \left(1 + \frac{APR}{n}\right)^n - 1$				
Compound Intere	est: $A = P\left(1 - P\right)$	$\left(\frac{r}{n}\right)^{n \cdot t}$						
Savings Plan Forn	nula: $A = PMT$	$\cdot \frac{\left[\left(1+r/n\right)^{n \cdot t}-1\right]}{r/n}$	Payment Formula:	$PMT = \frac{P \cdot r/n}{\left[1 - \left(1 + r/n\right)^{-n \cdot t}\right]}$				
	TVM (Time Value of Money)							
On TI-Plus Calculators \rightarrow APPS : Finance: TVM Solver; On TI-83 Calculators \rightarrow 2ND : x^{-1} : TVM Solver								
N= Number of total payments. (n*t)								
1%=		Annual Percentag	Annual Percentage Rate as a %, not a decimal					
PV=		Present Value: Sta	Present Value: Starting balance of a loan, or savings account					
PMT=		Recurring paymer	Recurring payment					
FV=		Future value/accr	Future value/accrued amount. (0 for loans)					
	P/Y=	Payments per yea	Payments per year (most often 12 for monthly payments)					
	C/Y=	Compounding cyc	Compounding cycles per year (n; often matches P/Y)					
	PMT: <mark>END</mark> BEGIN	Time when payme	ents are made (almost a	lways END unless specified)				

IMPORTANT: If the money is <u>coming to you</u>, the value will be <u>positive</u>. If the money is <u>leaving your hands</u>, it is <u>negative</u>. TO SOLVE FOR A VALUE: Move curser to whichever item you want to solve for and press ALPHA and then ENTER

Examples:

You put \$1000 in a savings account that has an annual interest rate of 6% with annual compounding. Without any additional payments, what will the balance be after 10 years?

$$A = 1000(1 + .06)^{10} = \$1790.84$$

N= 10 I%= 6 PV= -1000 PMT= 0 FV= 1790.847697 P/Y= 1 C/Y= 1 PMT:END BEGIN

How much did you contribute?

How much interest did you earn?

1790.84 - 1000 = 790.84

If instead you decide to initially deposit \$1000 in the account and make monthly payments of \$20 compounded monthly, what will the balance be?

$$A_{Total} = A_{\$1000} + A_{\$20\,pmt/mo}.$$

$$A_{\$1000} = \$1000 \cdot \frac{\left[(1 + .06/12)^{12.10} - 1 \right]}{.06/12} = \$1819.40$$

$$A_{\$20\,pmt/mo} = 20 \cdot \frac{\left[(1 + .06/12)^{12.10} - 1 \right]}{.06/12} = \$3277.58$$

 $A_{Total} = $1819.40 + $3277.59 = 5096.98

N= 120
I%= 6
PV= -1000
PMT= -20
■FV= 5096.98367
P/Y= 12
C/Y= 12
PMT: <mark>END</mark> BEGIN

How much did you contribute? $\$1000 + \$20 \cdot 12 \cdot 10 = \$3400$

How much interest did you earn? \$5096.98-\$3400 = \$1696.98 You buy a house for \$300000, and you put 10% down. What will your monthly payments be if you get a 30-year mortgage at 8%? $PMT = \frac{270,000 \cdot .08/12}{2} = $1981.$

$$MT = \frac{100,000,000,000,000}{\left[1 - \left(1 + .08/12\right)^{-12.30}\right]} = \$1981.17$$

How much would you have ultimately paid for the house?

 $30000 + 1981.17 \cdot 12 \cdot 30 = 743221.2$

How much interest did you pay?

743221.2 - 300000 = 443221.2

© Chandler-Gilbert Community College Learning Center

Monthly Balance Table

[For an account/credit card with a starting balance of \$500 and an Annual Percentage Rate (APR) of 15%]

Month	Payment	Expenses	Interest	Balance
0	-	-	-	\$500
1	\$100	\$85	\$500·.15/12=\$6.25 ¹	\$491.25 ²
2	\$250	\$165	\$491.25.15/12=\$6.14	\$412.39
3	\$200	\$40	\$412.39.15/12=\$5.16	\$257.55
4	\$150	-	\$257.55.15/12=\$3.22	\$110.77

1 - To find the interest charge (finance charge) for each month, take the previous month's balance, and multiply it by the annual interest rate divided by 12 (remember that r/12 is the monthly interest rate).

$$500 * \left(\frac{.15}{12}\right) = 6.25$$

 $2-{\rm To}$ find the new balance for the month, take the previous month's balance, subtract the payment, add the expenses, and add the interest charge.

500 - 100 + 85 + 6.25 = 491.25

Credit Card Payoff/Transfer Example

Your current balance on a credit card is \$3,750 and the annual percentage rate is 21%. You want to pay the balance off in four and a half years. Assuming that you will make no more purchases with this card and no other costs will be incurred, how much should you pay each month to eliminate the debt in the time you have allotted?

N=	4.5X12 = 54			
1%=	21		You will pay	
PV=	3750		\$107.71 each	า
*PMT=	-107.91 <		month to pay	off
FV=	0	\mathbb{N}	the balance in	4.5
P/Y=	12	$ \rangle$	years	
C/Y=	12			
PMT:	END	BEGIN		

You receive a letter in the mail from a different credit card company offering you better interest rates for 2 years if you agree to transfer the balance and agree to a 4% transfer fee. They will use an APR of 1.99% for the first six months, the next year the APR will be 8.99%, and the final six months of the offer, the APR becomes 15.99%. After the two year period, the APR will be fixed at 49.99%. Is it better to continue with the first plan, or should you transfer the balance?

			- \					
N=	6			The original balance plus the transfer fee]	N=	12	
1%=	1.99		\frown	1		I%=	8.99	
PV=	3750 +.04(3750)			igvee The payment will be the same as before		PV=	3288.82	
PMT=	-107.91 🗲					PMT=	-107.91	
*FV=	-3288.22			The FV at the end of this time period is	ſ	*FV=	-2247.35	
P/Y=	12			the PV for the next time period		P/Y=	12	
C/Y=	12					C/Y=	12	
PMT:	END	BEGIN				PMT:	END	BEGIN
N=	6		1	N= 30 -				
10/-	15.00			19/- 40.00			30 months	remain fr

PMT:	END	BEGIN
C/Y=	12	
P/Y=	12	
*FV=	-1763.7	
PMT=	-107.91	
PV=	2247.35	
I%=	15.99	
N=	6	

Exponential Growth/Decay

General Exponential Form: $y = a \cdot b^x$

Doubling Formula:
$$Q(t) = Q_0 \cdot 2^{t/T_{double}}$$

lalf-Life Formula:
$$Q(t) = Q_0 \cdot \left(rac{1}{2}
ight)^{t/T_{half}}$$

Rule of 72 (Estimate for doubling or halving time): 72

Examples:

Estimate how long it would take for a population to double if it was growing at an annual rate of 6%. 72/6 = 12 years

In 2000, the population of a city was 35,000. If the population was doubling every 15 years, what would you predict the population would be in 2040?

$$Q(40) = 35,000 \cdot 2^{4\%_{15}} = 222,236$$
 people

What fraction will remain after 100 years of a substance that has a half-life of 25 years? $\frac{Q}{Q_0} = \left(\frac{1}{2}\right)^{100/25} = .0625 \text{ or } 6.25\%$

© Chandler-Gilbert Community College Learning Center