INTEREST

P = Principal = balance on which interest is paid

Y = number of years (may be a fraction)

APR = annual percentage rate (decimal form for hand calculations)

APY = annual percentage yield = actual percentage by which

a balance increases in one year

A = accumulated balance after Y years n = number of compounding periods per year

	Formula	Examples	APY
Simple Interest	Interest = $P \times APR \times Y$	Interest on a starting balance of \$1000 at an annual interest of 6% per year for 15 years. Interest = $$1000 \times .06 \times 15 = 900 Accumulate d balance = $$1000 + $900 = 1900	APY = relative increase over one year = <u>absolute increase over one year</u> starting principal (multiply by 100 to convert to %) APY = APR = annual interest rate
Compound Interest paid once per year	$A = P \times (1 + APR)^{Y}$	Accumulated balance on a deposit of \$1000 at an interest rate of 6% per year compounded yearly for 15 years $A = $1000 \times (1 + .06)^{15} = 2396.55	APY = APR for yearly compounding APY = 6%
Compound Interest paid n times per year	$A = P \times \left(1 + \frac{APR}{n}\right)^{(n \times Y)}$	Accumulated balance on a deposit of \$1000 at an interest rate of 6% per year compounded monthly for 15 years (note: n = 12) $A = $1000 \times \left(1 + \frac{.06}{12}\right)^{(12 \times 15)} = 2454.09	In one year a deposit of \$1000 at an APR of 6% compounded monthly would have an accumulated balance of $A = $1000 \left(1 + \frac{.06}{12}\right)^{(12 \times 1)} = $1,061.67$ This is an increase of \$61.67. APY = relative increase of this year = $\frac{61.67}{1000} = .06167 \approx 6.167\%$
Continuous Compounding of Interest	$A = P \times e^{(APR \times Y)}$	Accumulated balance on a deposit of \$1000 at an APR of 6% compounded continuously for 15 years $A = $1000 \times e^{(.06 \times 15)} = 2459.60	In one year a deposit of \$1000 at an APR of 6% compounded continuously would have an accumulated balance of $A = $1000 \times e^{(.06 \times 1)} = 1061.83 . This is an increase of \$61.83. APY = relative increase of this year = $\frac{61.83}{1000} = .06183 \approx 6.183\%$