Molecular Geometry

Formula: AB_ne_m A = central atom, B = directly bonded atoms to A, and e = nonbonding (unshared) pairs of electrons

*Note that a molecule formed by joining only **two (2) atoms together is linear** regardless of the number of unshared pairs of electrons (AB, ABe, ABe₃, etc).

ABnem	# of Electron Regions	Electron Geometry	# of Bonding Regions	# of Nonbonding Regions	Molecular Geometry	Structural representation	Hybrid Orbitals	Examples
AB ₂	2	Linear	2	0	Linear	• • •	sp	HgCl ₂ , CO ₂ , HCN
AB ₃	3	Trigonal Planar	3	0	Trigonal Planar	•	sp ²	BF ₃ , BCl ₃ , SO ₃ , CO ₃ ⁻²
AB ₂ e	3		2	1	Bent	•	sp ²	SO ₂ , NO ₂ -
AB ₄	4	Tetrahedral	4	0	Tetrahedral		sp ³	CH4, SiCl4, POCl3
AB ₃ e	4		3	1	Trigonal pyramidal	•	sp ³	NH ₃ , PF ₃
AB ₂ e	4		2	2	Bent		sp ³	H ₂ O, H ₂ S, BrO ₂ ⁻
AB ₅	5	Trigonal Bipyramidal	5	0	Trigonal Bipyramidal		dsp ³	PH ₅ , PCl ₅ , SbF ₅ , IO ₃ F ₂ ⁻
AB4e	5		4	1	Distorted tetrahedron ("See-Saw")	•	dsp ³	SF4, IF4 ⁺
AB ₃ e ₂	5		3	2	T-Shape	•	dsp ³	ClF3, BrF3
AB ₂ e ₃	5		2	3	Linear	• 者 •	dsp ³	I ₃ ⁻ , ICl ₂ ^{-,} XeF ₂
AB ₆	6	Octahedral	6	0	Octahedral	•	d ² sp ³	SF_6 , PF_6^-
AB ₅ e	6		5	1	Square Pyramidal	•	d ² sp ³	IF5, XeOF4
AB ₄ e ₂	6		4	2	Square Planar	•	d ² sp ³	XeF4, BrF4 ⁻

Lewis Structures

CAUTION: Different course/instructors may ask for more or less. Make sure you are clear on your instructor's expectations.

Lewis originally sold his idea based on a cubic shape because it has eight points (origin of the octet rule). This has since mutated to formatting a beginning Lewis structure off of a square with the center atom being the center of that square.

Electrons are considered more "stable" as pairs, so "always" try to keep them paired.

- 1. Total the **valence** electrons from each atom AND **count "charges"** as extra or lost electrons.
- 2. Choose a central atom to act as a **connector or bridge**. This is usually the least electronegative (or most metallic). *(Exception: anything that cannot "bridge")*. Place remaining atoms on face of square around center atom.
- 3. Add the electrons in pairs to the MOST electronegative atom (or least metallic) first to satisfy the octet rule (*noble rule*): eight electrons around every atom except hydrogen (no more than two electrons).
- 4. Continue adding electrons to the rest of the atoms until the **total electrons** (from Step 1) are accounted for.
- 5. Convert pairs of electrons **between** atoms into a "line" to represent a bond.
- 6. Move non-bonding pairs of electrons between atoms that have not satisfied "their" octet.
 - **RESONANCE**: If there is more than one atom that has non-bonding electrons, then you MUST draw all possible structures.
- <u>CHM130</u>: Assign all non-zero Formal Charges in the upper right corner outside a bracket set: []^{charge}.
 <u>Other CHM</u>: Assign non-zero Formal Charges to *each atom*

Formal Charge = # valence electrons - # non-bonding electrons - # bonds

For ADVANCED classes/instructors: Choose the best structure according to the following priority:

 All atoms satisfy octets.
 Minimize charge even at cost of *exceeding* octet

Electron regions: Count the faces of the square that have electrons present

Bonding regions: Count the faces of the square that have at least one bond

Nonbonding regions: Count the faces of the square that have a non-bonding pair of electrons.

Examples: Methane: CH4

Sulfur Dioxide: SO₂

