Physics — Mechanics

Rule #1: DRAW A PICTURE (Pictorial Representation, Motion Diagrams, Free-Body Diagrams)

Draw a picture of what the question is describing. Use motion diagrams and free-body diagrams to assist you in seeing
what is going on in the question.

Motion Diagrams: - +X Free-Body Diagrams:
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Ball rolling Car speeding up Box sliding to a stop

Constant speed

Rule #2: LABEL/LIST YOUR KNOWN VALUES AND THOSE DESIRED (Include units!!

Label or list all values that were given to you in the problem. Also, include any values that were not explicitly stated, but

can be inferred from the problem (gravity occurs in most problems, but goes unsaid, so list ag =-9.8M $2 ). Lastly,

label those values that you are seeking as well.

Motion in One Dimension (Translational Kinematics)

Equations for one-dimensional motion follow, but it is important to note that not all motion is one-dimensional. In order
to still use these equations, motion that occurs in multiple dimensions must be broken apart into one-dimensional
components. The one-dimensional equations may then be used for each component separately.

Equations of One-Dimensional Motion ( X has been used to denote Variables
the position in any general direction; S also commonly used)

AX =area under V-t graph = jv -dt

A denotes "change in"

t=Time

AV = area under a-t graph = Ia-dt
X = Position in any general direction

. _ AX Xf _Xo _ . o
Vg =Slope of X-t graph = Nt %, = Initial Position
e X, = Final Position
AV ViV
a,,, =slope of v-t graph =—=——- '
At -t~ v = Velocity
WX s _adv V.., = Average Velocity
inst inst .
dt dt v, = Instantaneous Velocity
Equation for Constant Velocity (zero acceleration) V, = Initial Velocity
X =V, - At+X, v, = Final Velocity
Equations for Constant Acceleration a = Acceleration
1 ) a,,, = Average Acceleration
X, =—a-(At)" +V,-At+X, N .
2 a, = Instantaneous Acceleration
V., =a-At+v,
V.2 =V, +2a-AX



Projectile Motion

Projectile motion can be simplified into two separate one-dimensional motions: one motion of the object going up & down and a
separate motion of the object going left or right. These motions can be considered independently. Once the motions are separated

we are free to use the equations for one-dimensional motion on each component.
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Equations of Projectile Motion
a, =0 (ignoring air resistance)

vV, =V,-Cc0s6
v, =V,-sind a
0

y =y

y

Horizontal Range Equation
(distance traveled when an object launches and lands at same height)
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This equation can be derived using equations for one-dimensional motion, equations

for projectile motion, and the fact that y; =Y, .
_2 -
Yo -sin(26)

a,

Xf =Xo =

Vertical Range Equation (maximum height of object)

This equation can be derived using equations for one-dimensional motion, equations
for projectile motion, and the fact that at the maximum height \7y =0.
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Motion down a Frictionless Inclined Plane

Variables

¢ = Launch Angle off + x axis

v, = Initial Velocity
v,, = Initial Velocity in x direction
v,, = Initial Velocity in y direction

a, = Acceleration in x direction

a, = Acceleration iny direction

a, = Acceleration due to gravity
NOTE! ag has magnitude and direction since
it is the vector for gravity (direction would be a
positive or negative sign). ag has only the
magnitude since it is the scalar for gravity
(meaning ag is always positive).

Variables

6 = Angle of Incline

a, = Acceleration down plane
d, = Acceleration due to Gravity
= Gravity in the x direction

a
9x
a, = Gravity in they direction




Circular Motion (Rotational Kinematics)

Circular motion seems like a fairly complicated two-dimensional motion, but when broken down it can be seen that many of the
equations and ways we approach circular motion are nearly identical to the one-dimensional equations. When looking at the
equations below you may notice that they seem to be one-dimensional equations that just have different variables, and that is

exactly what they are. @ replaces S Or X Or Y, @ replaces V, and & replaces @. The difference with circular motion is we have
additional equations to solve the additional pieces that exist when motion goes from linear to circular.

where a, =0 wherea, #0, a %0 S
Vt \7t1 anet = al + al‘
v, a
Vt vtz : g ;net lar
A \7t3
General Equations for Circular l\glotlon Variables
Y
AS=r-AO a =-L=w’r .
S r = Radius
B _2nr A\ T =Period
Vi=o = & = A& ' v, = Tangential Velocity

a, = [32 +a] a, = Tangential Acceleration (A in speed)
a, = Radial Acceleration (A in direction)
A6 =area under w-t graph = '[a) dt

6 = Angular Position

Aw = area under a-t graph = _[a dt o -
6, = Initial Angular Position

Ae ef _00 - .-
w,,, =slope of 6-t graph = N1t 6, = Final Angular Position
£
aavg = Slope of w-t graph = & =— : @ AngUIar VeIOCIty .
t ot -t w,,, = Average Angular Velocity
o = do a, = do o,y = Instantaneous Angular Velocity
dt dt @, = Initial Angular Velocity

Final Angular Velocity

Equation for Constant Angular Velocity/ @y

Uniform Circular Motion (zero angular acceleration) )
0. —w-At+6 a = Angular Acceleration
f 0

= Average Angular Acceleration

Equations for Constant Angular Acceleration/ o, = Instantaneous Angular Acceleration
Non-Uniform Circular Motion (constant angular acceleration) a, = Initial Angular Acceleration

1 . .
0, = —a(At)2 + @, - At+6, a, = Final Angular Acceleration

2

w; =a-At+w,

0" =0 +2a-A0



Forces

The basic idea behind forces is that a force is a push or pull exerted on an object. We have used equations to show an object’s
motion, and now we use forces to show why an object may be changing its motion. When looking at forces acting on an object we
will tend to separate forces into one-dimensional components just as we did with motion but we can also sum all the forces in those
dimensions to see what we call the resultant force or net force. The idea is that when numerous forces act on an object you can add
them all together to see what the net force is, and this net force determines what kind of change in motion the object experiences.

We use the acceleration from this net force to link forces to our motion equations.

General Force Equations

F=m-a

Ifne t, = z If x

SFE=F +F +F +.+F, =m-a,

Specific Force Equations

Friction:
fo < -n Ifspz—k-A§
fk = :uk N lfg = ' g
fo=up-n |F|:Gmlm2
2 g 2

D=C,-Av r

Note on Frictional Forces

When picking which frictional force to use it is important to note when each one
should be used. Static friction, fs , should be used when the object we are
looking at is not in motion or is being powered in its roll or braking.

Kinetic friction, fk , should be used when an object is moving/sliding across a

surface. Rolling friction, Fr , should be used when an unpowered object is rolling

across a surface. Frictional forces always point in the direction opposite to the
motion, or in the case of static friction, in the direction to prevent motion.

Momentum & Impulse

Variables

F = Force

m = Mass

a = Acceleration
F .. = Net Force

F_ = Forces in x-direction

F, =Spring Force
k = Spring Constant
As = Distance Stretched/Compressed

n = Normal Force
f_=Static Friction

= Coefficient of Static Friction
f, = Kinetic Friction
4, = Coefficient of Kinetic Friction

f = Rolling Friction
= Coefficient of Rolling Friction
D = Drag Force (opposite to motion)

A = Cross-Sectional Area ( L to motion)
C, = Coefficient of Drag

Momentum can be thought of as a quantity that represents how difficult it is to stop an object in motion or change an object’s
direction of motion. Our main use for momentum comes from the fact that in a closed system the total momentum is constant

(Conservation of Momentum). This fact allows us to have a better understanding of the interaction of objects, particularly in collisions
and explosions. What seem like chaotic interactions in collisions and explosions can be broken into parts, and so long as our system is
closed, the sum of the momenta before the event is equal to the sum of the momenta after the event. If the system is not closed,
then we have to take into consideration any outside forces taking or giving momentum to our system. Impulse is the change in
momentum for an object and is equal to the product of a force and the duration of time that it is applied.

Momentum & Impulse Equations

p=m-v
J =Ap ~F_ At
t
- I F_(t)-dt = area under F-t graph
)

Conservation of Momentum

z pxo = z pr rjxl0 + pxzo + DXSD ot rjxn0 =

Variables

p = Momentum
J = Impulse
F. = Average Force in x-direction

Xavg

At = Change in Time

pxlf + p>(2f + pxsf ot pxnf

Remember: You can only use the conservation of momentum if the system is “isolated” or “closed”. This means that you can only
use the conservation of momentum if there are no outside forces that are adding or taking momentum from the system.




Enerqy, Work & Power

We can think of systems as having energy, and if there are no outside forces on these systems, then the energy is conserved much in
the way momentum is conserved. Just as an outside force can change the momentum of the system, an outside force can change
the energy of a system through what we call work. Power is the rate at which energy is transferred of transformed.

Energy & Work Equations Variables
K=1m.v2 K = Kinetic Energy
2 U, = Elastic Potential Energy (Spring)
1 2 P _
Ugp = Ek (4s) k = Spring Constant

AU, =m-g-Ay Ar = Change in position in any general direction

U,=m-g-horm-g-"y"
U, = Gravitational Potential Energy

AE,, =|f - Ar| : : : -
) h = Height ~ Ay = Change in Vertical Position
W = LO F, -dx = Area under F-x curve AE, = Change in Thermal Energy
W = F -AF, if F is constant and straight-line motion W = Work _ o
_ AT = Distance Traveled in Same Direction as Force
W =F-Arcosé

W,,, = Work External

Conservation of Energy
K, +U,+W,, =K, +U, +AE,

The conservation of energy is useful in many situations because, unlike the conservation of momentum, we can still use the
conservation of energy if there are outside forces. Outside forces are taken into account by work done on the system.

Variables

Power

AE dE P = Power
P= A—tsys = % E,. = Energy of the System

o t=Time
P=F.v _=F-.vcosé@d

inst F = Force
v = Velocity

Rotation of a Rigid Body

The following rotational motion equations can be used when you have a rigid body that is being revolved around a fixed point.

Rotational Motion Equations Variables
M=>m=m+m,+m,+...
Z‘ oo s M = Total Mass
m,X, +Mm, %, +M,X, +... X = Center of Mass in any general direction

= 1 R
Xem :VZ(mi 'Xi)

My + M, + My +... K, = Rotational Kinetic Energy

X, =i_[>‘<-dm @ = Angular Velocity
M r = Radius
1 |, = Inertia at Center of Mass
Kot = 2 |- o’ d = Distance between Axis of Rotation and Center of Mass

| = Inertia at distance d from Center of Mass

| = I r’-dm=>Y mr’ (for point masses) about parallel axis

I=1,,+M-d?

Because the integral to find the inertia about a center of mass can be very difficult to solve, most classes do not require the
calculation. General equations for the inertia of different objects will be provided to you or can be found in your text.



Torque

Torque can be thought of as the rotational equivalent of force. So for an example when you push a door open you are applying a
force to the door, this force exerts a torque around the pivot point (in this case is the hinges) which will cause the door to open.
Positive torque provides counterclockwise rotation. Negative torque provides clockwise rotation.

Torgue Equations

r=rxF r=r-F,
T.=1-a r=r-F-sing
Pivot Point

=

Useful Trigonometric Equations

If” — Causes No Rotation

Variables

7 =Torque
r = Distance from Pivot Point
F, = Force perpendicular to 1

@ = Angle between vectors r and F

(Extended to meet one another)

| = Moment of Inertia
a = Angular Acceleration

sin@ =—PP cos:9:a—dJ

hyp hyp

tang = 2PP ¢’ =a’+b?
adj
Constants

M, = Mass of Earth =5.98x10%*kg
R, = Radius of Earth = 6.37x10°m
M ___ =Mass of Moon = 7.36x10%kg

moon

R =Radius of Moon =1.74x10°m

moon

R, = Radius of Earth Orbit =1.50x10"m

g=a, =-981"/, =—32//
G=6.67x10" Nm/g2

= Speed of sound in air =343 ry

sound

m, = Mass of a proton or neutron =1.67x10*kg
m, = Mass of an electron =9.11x10"*"kg
&, = Permittivity constant = 8.85x10* C%\lmz

K = Coulomb's law constant% =8.99x10° Nm72
72'80 C

B - B ST
U, = Permeability constant =1.26 x10 /A\

e = Fundamental unit of charge =1.60x107°C
¢ = Speed of light in a vacuum = 3.00x10° ’%

C

hypotenuse (hyp) b
opposite side (opp)

0
a
adjacent (adj)
Coefficients
Static Kinetic Rolling
Material M Hy Hy
Rubber on concrete 1.00 0.80 0.02
Steel on steel (dry) 0.80 0.60 0.002
Steel on steel (lubricated) 0.10 0.05
Wood on wood 0.50 0.20
Wood on snow 0.12 0.06
Ice onice 0.10 0.03
Metal Resistivity(Qm)  Conductivity(1/Qm)
aluminum 2.8x10°° 3.5x10’
copper 1.7x10°® 6.0x10’
gold 2.4x10°® 4.1x10’
iron 9.7x10°® 1.0x10’
silver 1.6x10°® 6.2x10’
tungsten 5.6x10°® 1.8x107
Conversions

1 mile =5280 feet =1609 meters =1.609 kilometers
1inch = 2.54 centimeters

1 hour = 60 minutes = 3600 seconds

1 revolution = 360° = 2 radians

1 r%:2.24”" [ =3.28 f%

1eV =1.60x10"]
1u=1.66x10""kg
1kg ~ 2.2lbs on Earth



