Names and Formulas of Common Ions

<u>Monoatomic anions</u>: negatively charged ions consisting of a single atom of one element (usually a nonmetal). To name a monoatomic anion, use the stem of the element's name and add the ending "-<u>ide</u>".

Group 14 nonmetals Group 15 nonmetals		Group	Group 16 nonmetals		Group 17 nonmetals		
	4- charge		3- charge		2- charge		1- charge
C4-	carbide	N ³⁻	nitride	0 ²⁻	oxide	F	fluoride
Si ⁴⁻	silicide	P ³⁻	phosphide	S ²⁻	sulfide	Cl	chloride
		As ³⁻	arsenide	Se ²⁻	selenide	Br	bromide
						ľ	iodide
						H	hydride
						Not a Grou	ıp 17 element, but it

can make a 1- charge!

Nonmetal Oxyanions (polyatomic anions): These negatively charged ions consist of more than one element (usually oxygen with another nonmetal). The most common form of any oxyanion is named by using the stem of the nonmetal's name and adding the ending "-<u>ate</u>".

Group	14 nonmetals	nonmetals Group 15 nonmetals		Group 16 nonmetals		Group	Group 17 nonmetals	
CO3 ²⁻	carbonate	NO ₃	nitrate	SO ₄ ²⁻	sulfate	CIO3	chlorate	
SiO ₃ ²⁻	silicate	PO4 ³⁻	phosphate	SeO ₄ ²⁻	selenate	BrO ₃	bromate	
		AsO ₄ ³⁻	arsenate			10 ₃	iodate	

If a polyatomic anion has one less oxygen than the most common form, the ending is changed from "-<u>ate</u>" to "-<u>ite</u>" without changing the negative charge. (Think: "-ite" is oxygen "lite"!)

Group 14 nonmetals		Group 15 nonmetals		Group 16 nonmetals		Group	Group 17 nonmetals	
CO 3 ²⁻	carbonate	NO 3	nitrate	SO 4 ²⁻	sulfate	CIO 3 ⁻	chlorate	
No	"-ite" form	NO ₂ ⁻	nitrite	SO ₃ ²⁻	sulfite	CIO ₂ ⁻	chlorite	
SiO 3 2-	silicate	PO 4 3-	phosphate	SeO 4 ²⁻	selenate	BrO ₃ ⁻	bromate	
No	"-ite" form	PO3 ³⁻	phosphite	SeO ₃ ²⁻	selenite	BrO ₂	bromite	
		AsO 4 3-	arsenate			<i>IO</i> 3 ⁻	iodate	
		AsO ₃ ³⁻	arsenite			10 ₂ ⁻	iodite	

Polyatomic oxyanions with halogens can exist in four different forms, depending on the number of oxygens present. To name the most common form of the anion, use the stem of the halogen's name and add the ending "-*<u>ate</u>*". If the oxyanion has one less oxygen than the most common form, the ending changes from "-<u>*ate*</u>" to "-<u>*ite*</u>". If there is one less oxygen than the "-<u>*ite*</u>" anion, add the prefix "<u>*hypo*</u>-" to the beginning of the "-<u>*ite*</u>" anion's name. If there is one more oxygen than the most common anion (the "-<u>*ate*</u>" anion), add the prefix "<u>*per*</u>-" to the beginning of the "-<u>*ate*</u>" anion's name.

CIO4	<u>per</u> chlorate	BrO ₄	<u>per</u> bromate	IO ₄	<u>per</u> iodate
CIO 3	chlorate	BrO 3	bromate	<i>IO</i> 3 ⁻	iodate
CIO2	chlor <u>ite</u>	BrO ₂	brom <u>ite</u>	10 ₂	iod <u>ite</u>
CIO	<u>hypo</u> chlor <u>ite</u>	BrO	<u>hypo</u> brom <u>ite</u>	10	<u>hypo</u> iod <u>ite</u>

<u>Metal oxyanions</u>: Some polaytomic oxyanions contain a metal instead of a nonmetal. These ions are named by adding the suffix "-<u>ate</u>" to the stem of the metal name.

CrO ₄ ²⁻	chromate		
Cr ₂ O ₇ ²⁻	dichromate*		
*The prefix "di-" indicates 2			
chromium atoms!			

MnO ₄	permanganate		
MnO ₄ ²⁻	manganate		
Note the difference in these two ions: same			
formul	a, but different charges!		

Names and Formulas of Common Ions

<u>Adding hydrogen to nonmetal oxyanions</u>: When a hydrogen ion (H^{+}) is added to an oxyanion, the charge of the oxyanion becomes less negative by *one*. The new anion is named by adding the word "<u>hydrogen</u> " before the name of the original oxyanion (or by adding the prefix "<u>bi</u>-"). If two hydrogens area added to an oxyanion, the charge will become less negative by *two* and the word "<u>dihydrogen</u>" is added in front of the original oxyanion's name.

Group 14 elements			Group 15 elements		Group 16 elements	
CO 3 ²⁻ HCO3 ⁻	carbonate hydrogen carbonate (or bicarbonate)	PO 4 ³⁻ HPO 2 ²⁻ H ₂ PO 4 ⁻	phosphate hydrogen phosphate dihydrogen phosphate	SO 4 ²⁻ HSO4	sulfate hydrogen sulfate (or bisulfate)	
		<i>PO</i> ₃ ³⁻ HPO ₃ ²⁻ H ₂ PO ₃ ⁻	phosphite hydrogen phosphite dihydrogen phosphite	SO 3 ²⁻ HSO3	sulfite hydrogen sulfite	

Other polyatomic ions: There are a few polyatomic anions that don't fit into any of the previous categories and have been given "common" names. It's best to try to commit these ions to memory!

1-	charge	2- charge			
C ₂ H ₃ O ₂ acetate		02 ²⁻	peroxide		
OH	hydroxide	*Look for the subscript to			
CN-	cyanide	tell the diffe	erence between		
CNO	cyanate	O ²⁻ (oxide ion)			
SCN	thiocyanate	and $O_2^{2^2}$ ((peroxide ion)!		

Monoatomic cations: positively charged ions consisting of a single atom of one element (usually a metal). There are two categories of monoatomic cations: cations with a single (or set) charge, and cations with variable charges.

To name a monoatomic ion with a set charge, name the element and add the word "*ion* " to show that there is a charge.

Group 1 1+	elements charge	Group 2 2+ char	elements ge	Other set	cations with t charges
H⁺	hydrogen ion	Be ²⁺	beryllium ion	Al ³⁺	aluminum ion
Li⁺	lithium ion	Mg ²⁺	magnesium ion	Zn ²⁺	zinc ion
Na⁺	sodium ion	Ca ²⁺	calcium ion	Cd ²⁺	cadmium ion
K⁺	potassium ion	Sr ²⁺	strontium ion	Ag ⁺	silver ion
Rb⁺	rubidium ion	Ba ²⁺	barium ion		
Cs⁺	cesium ion			-	

Some metals, especially the transition metals, can form more than one type of ion, each having a different charge. These charges can be difficult to predict from the periodic table, so they are indicated by using Roman numerals as part of the name.

Co ²⁺	cobalt (II) ion	Co ³⁺	cobalt (III) ion	Hg ²⁺	mercury (II) ion	Hg ₂ ²⁺	mercury (I) ion*	
Cu⁺	copper (I) ion	Cu ²⁺	copper (II) ion	*Exception - mercury (I) ion is actually a diatomic ion				
Fe ²⁺	iron (II) ion	Fe ³⁺	iron (III) ion	(two atoms), not monoatomic. Look for the subscript to tell the				
Pb ²⁺	lead (II) ion	Pb ⁴⁺	lead (IV) ion	difference between mercury (I) and mercury (II)!			l mercury (II)!	
Sn ²⁺	tin (II) ion	Sn ⁴⁺	tin (IV) ion					
Mn ²⁺	manganese (II) ion	Mn ³⁺	manganese (III) ion	Mn ⁴⁺	manganese (IV) ion	Mn ⁶⁺	manganese (VI) ion	
Manganese can form several different cations - these are the four most common forms.								

Polyatomic cations : Most polyatomic ions are negatively charged anions - there are only two common polyatomic cations.

NH_4^+ ammonium ion	H₃O ⁺	hydronium ion
-----------------------	------------------	---------------