Electric Fields			
Coulomb's Law	$F_e = k_e \frac{q_1 q_2}{r^2}$ $ \mathbf{e} = 1.60$	0219 x 10 ⁻¹⁹ C	$E = \frac{F_e}{q} = k_e \frac{q}{r^2} \vec{r}$
Continuous Charge	$dE = k_e \frac{dq}{r^2} \vec{r}$	$E = k_e \int \frac{dq}{r^2} \vec{r}$	$\rho = \frac{Q}{V}$
Distribution	$\sigma = \frac{Q}{A} \qquad \qquad \lambda = \frac{Q}{l}$	$\Delta q = \lambda \Delta x$	$dq = 2\pi r\sigma dr$
Motion of Charged Particles	F = qE = ma		$a = \frac{qE}{m}$
Gauss's Law	Electric Flux $\phi = \int_{s} E \cdot dA = EA$	$\cos \theta \qquad \phi_c$	$=\oint E \cdot dA = 4\pi k_e q$
Electric Potential	$\Delta U = -q \int_{A}^{B} E \cdot ds \qquad \Delta V = -\frac{\Delta}{2}$	$\frac{U}{q} = -\int_{A}^{B} E \cdot ds$	$V = k_e \frac{q}{r}$
	Continuous Charge Distributions	v = k	$e^{\int \frac{dq}{r}}$
Variables	$F_e = \text{electric force}$ $k_e = \text{coulomb constant (8.9875 x 109)}$ $E = \text{electric field}$ $r = \text{distance between 2 particles}$ $\vec{r} = \text{unit vector}$ $\rho = \text{volume charge density}$ $A = \text{area of surface}$	N·m²/C²) c	e = charge of an electron a = positive test charge $a_1 = charge on particle 1$ $a_2 = charge on particle 2$ $a_3 = surface charge density$ $a_4 = charge$ $a_5 = surface$ $a_6 = charge$ $a_7 = charge$

Electric Fields

 $\Delta x =$ change in position

F = force

m = mass

a = acceleration

V = electric potential

A = charge at a point B = charge at a point

 ΔV = potential difference

 λ = linear charge density

 ΔU = change in potential energy

 \oint = integral over a closed surface

l =length of a line

 $\Delta q = \text{small charge}$

 ϕ = electric flux

s = surface

Electricity and Magnetism				
Magnetic Force	$F_m = qv x B = qvB \sin \theta$	$F_m = (qvr \ x \ B) \ nAL$		
	$F_m = IL \times B$			
Continuous Field Distribution	$F = Ids \ge B$	$F = I \int_{a}^{b} ds \times B$		
Motion of Charged Particles	$F = qvB = \frac{mv^2}{r}$	$r = \frac{mv}{qB}$		
Gauss's Law	$\phi_{B} = \int B \cdot dA = BA \cos \theta$	$\oint BdA = 0$		
Currents in Wires	$\oint B \cdot ds = \mu_0 I$ $\oint B ds = B\ell = \mu_0 nI$	$\oint Bds = B \oint ds = B \ell$ $B = \mu_0 \frac{N}{\ell} I = \mu_0 nI$		
Faraday's Law of Induction	$\mathcal{E} = -\frac{d\phi_B}{dt} = -N\frac{d\phi_B}{dt}$ $V = E\ell = B\ell\nu$	$\mathcal{E} = -B\ell\nu$ $\oint E \cdot ds = -\frac{d\phi_B}{dt}$		
Variables	F _m = magnetic force v = velocity n = number of charges per unit volume q = charge θ = smaller angle between v and B = integral over a closed surface μ_0 = constant of permeability ($4\pi x 10^{-7}$ T ε = emf E = induced electric field	B = magnetic field vector A = cross-sectional area L = length. I = total continuous current ϕ_B = magnetic flux through the circuit n = number of turns per unit length V = number of turns V = potential difference		

Floatricity and Magnetism

Electric Circuits			
Resistors	$I = \frac{dQ}{dt} \qquad \Delta Q = (nAv_d\Delta t)q \qquad I = \frac{\Delta Q}{\Delta t} = nqv_dA$		
	$R = \frac{\ell}{\sigma A} = \frac{V}{I}$ Color Coded: Black Violet Brown Gray Red White Orange Gold Yellow Silver Green Colorless Blue		
	$R_{eq} = \left(\frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \cdots}\right)$ $\frac{ Blue}{\frac{1}{R_{eq}}} = \frac{1}{R_1} + \frac{1}{R_2} + \cdots$ $(1 - 1 - 1)$		
	$I = \frac{V}{R_1} + \frac{V}{R_2} + \dots = V\left(\frac{1}{R_1} + \frac{1}{R_2} + \dots\right)$		
	Series Arrangement $V = IR_1 + IR_2 + \dots \qquad \qquad R_{eq} = R_1 + R_2 + \dots$		
	Power $P = \frac{\Delta U}{\Delta t} = IV = I^2 R = \frac{V^2}{R}$		
Capacitors	$C \equiv \frac{Q}{V}$ $E = \frac{Q}{A} \frac{1}{\varepsilon_0}$ $C = \frac{Q}{V} = \frac{\varepsilon_0 A}{d}$		
	V = Ed		
	Parallel Arrangement $Q = Q_1 + Q_2$ $Q_1 = C_1 V, Q_2 = C_2 V$ $Q = C_{eq} V$ $C_{eq} V = C_1 V + C_2 V + \dots$ $C_{eq} = C_1 + C_2 + \dots$		
	Series Arrangement $V = V_1 + V_2$ $V = \frac{Q}{C_{eq}}$ $V_1 = \frac{Q}{C_1}, V_2 = \frac{Q}{C_2}$ $C_{eq} = \left(\frac{1}{\frac{1}{C_1} + \frac{1}{C_2} + \cdots}\right)$ $\frac{Q}{C_{eq}} = \frac{Q}{C_1} + \frac{Q}{C_2} + \cdots$		
	Energy $dW = Vdq = \frac{q}{C}dq$ $U = \frac{Q^2}{2C} = \frac{1}{2}QV = \frac{1}{2}CV^2$ $W = \int_0^Q \frac{q}{C}dq = \frac{Q^2}{2C}$		
Inductors	$\mathcal{E} = -L\frac{dI}{dt} = -N\frac{d\phi_B}{dt}$ $L = \frac{N\phi_B}{I}$ Energy $U = \frac{1}{2}LI^2$		

Electric Circuits

Electric Circuits		
Kirchoff's Law	$\sum I_{int \ o \ node} = \sum I_{leaving \ node} \qquad \sum \Delta V_{closed \ circuit} = 0$	
RC Circuits	Charging $\mathcal{E} - IR - \frac{q}{C} = 0$ $I = \left(\mathcal{E} - \frac{q}{C}\right)\frac{1}{R}$ $I(t) = \frac{\mathcal{E}}{R}e^{-\frac{t}{RC}}$	
	$\frac{dq}{(q-C\mathcal{E})} = -\frac{1}{RC}dt \qquad q(t) = C\mathcal{E}\left[1 - e^{-\frac{t}{RC}}\right] \qquad \ln\left(\frac{q-C\mathcal{E}}{-C\mathcal{E}}\right) = -\frac{t}{RC}$	
	Discharging $IR = \frac{q}{C}$ $-R\frac{dq}{dt} = \frac{q}{C}$ $\frac{dq}{q} = -\frac{1}{RC}dt$	
	$\ln\left(\frac{q}{Q}\right) = -\frac{t}{RC} \qquad q(t) = Qe^{-\frac{t}{RC}} \qquad I(t) = -\frac{dq}{dt} = I_0 e^{-\frac{t}{RC}}$	
RL Circuits	Charging $\mathcal{E} - IR - L\frac{dI}{dt} = 0$ $\frac{dI}{dt} = \frac{\mathcal{E}}{L}e^{-\frac{Rt}{L}}$ $I = \frac{\mathcal{E}}{R}\left(1 - e^{-\frac{Rt}{L}}\right)$	
	Discharging $I(t) = \frac{\mathcal{E}}{R} e^{-\frac{Rt}{L}}$ $\frac{dI}{dt} = \frac{\mathcal{E}}{L} e^{-\frac{Rt}{L}}$	
LC Circuits	$U = \frac{Q^2}{2C} + \frac{1}{2}LI^2 \qquad \qquad \varpi = \frac{1}{\sqrt{LC}} \qquad I = \frac{dQ}{dt} = -\omega Q_{\max} \sin(\omega t + \phi)$	
	$Q = Q_{max} \cos(\omega t + \varphi)$	
RLC Circuits	$\frac{dU}{dt} = -I^2 R \qquad \qquad L\frac{d^2 Q}{dt^2} + R\frac{dQ}{dt} + \frac{Q}{C} = 0 \qquad \qquad LI \frac{dI}{dt} + \frac{Q}{C} \frac{dQ}{dt} = -I^2 R$	
Variables	$I =$ electric current $\Delta Q =$ change in charge $v_d =$ drift velocity $n =$ density of charge carriers $A =$ cross-sectional area $\Delta t =$ change in time $q =$ charge on each carrier $V =$ potential difference $\ell =$ length of conductor $\sigma =$ conductivity of the material of which it is made $R =$ resistance $I =$ current $R_1 =$ resistor $R_2 =$ resistor $R_{eq} =$ equivalent resistance $\Delta U =$ change in potential energy $P =$ power $Q =$ magnitude of a charge $E =$ Electric Field $C =$ capacitance $\mathcal{E}_0 =$ permittivity of free space $8.854187817x10^{-12} C^2/Nm^2$ (exact) $d =$ distance $Q_2 =$ max charge on capacitor $Q_1 =$ max charge on a capacitor $Cq =$ capacitance $Q_2 =$ max charge on different capacitor $C_1 =$ capacitance $V_2 =$ capacitance $V_1 =$ potential difference across capacitor 1 $C_2 =$ capacitance $V_2 =$ potential difference across capacitor 2 $W =$ work $U =$ potential energy $\mathcal{E} =$ emf of battery $L =$ inductance $N =$ number of turns of a coil $\phi_B =$ magnetic flux $\overline{\sigma} =$ angular frequency $e = (e^{\wedge})$ button on calculator $t =$ time $\phi =$ phase angle	

Electromagnetic Waves

Electric Waves	$\oint E \cdot ds = -\frac{d\phi_B}{dt}$	$\frac{\partial^2 E}{\partial x^2} = -\frac{\partial}{\partial t} \left(-\mu_0 \varepsilon_0 \frac{\partial E}{\partial t} \right) = -\mu_0 \varepsilon_0 \frac{\partial^2 E}{\partial t^2}$
		$\frac{\partial E}{\partial x} = -\frac{\partial B}{\partial t}$

Magnetic Waves	$\oint B \cdot ds = \mu_0 \varepsilon_0 \frac{d\phi_e}{dt}$	$\frac{\partial B}{\partial x} = -\mu_0 \varepsilon_0 \frac{\partial E}{\partial t}$
	$\frac{\partial^2 B}{\partial x^2} = \frac{\partial}{\partial t} \left(-\mu_0 \varepsilon_0 \frac{\partial E}{\partial x} \right) = \mu_0 \varepsilon_0 \frac{\partial^2 B}{\partial t^2}$	$c=rac{1}{\sqrt{\mu_{_0}arepsilon_{_0}}}$

	Poynting Vector	$S \equiv \frac{1}{\mu_0} E \times B$	
--	-----------------	---------------------------------------	--

Variables	\oint = integral over a closed surface	∂ = partial derivative of
	x = position	$\mu_0 = 4\pi \ge 10^{-7} \text{ T} \cdot \text{m/A}$
	$\varepsilon_0 = 8.85419 \text{ x } 10^{-12} \text{ C}^2/\text{Nm}^2$	E = electric field
	$\phi_{\scriptscriptstyle B}$ = magnetic flux	$\phi_e = ext{electric flux}$
	B = magnetic field	t = time
	$c = \text{speed of light (2.99792 x 10^8 m/s)}$	S = poynting vector

Optics			
Reflection & Refraction	Snells Law	$\frac{\sin\theta_2}{\sin\theta_1} = \frac{v_2}{v_1} = \cos\theta_1$	nstant
	Index of Refraction	$n = \frac{c_{vacuum}}{c_{medium}}$	$v = f\lambda$
	$\frac{\lambda_1}{\lambda_2} = \frac{v_1}{v_2} = \frac{n_2}{n_1}$	$\lambda_1 n_1 = \lambda_2 n_2$	$\frac{\sin \theta_1}{\sin \theta_2} = \frac{n_2}{n_1}$
Mirrors	$\theta = \frac{h}{p} = -\frac{h'}{p}$	$M = \frac{h'}{h} = -\frac{q}{p}$	$\tan \alpha = \frac{h}{p-R} = -\frac{h'}{R-q}$
	$\frac{h'}{h} = -\frac{R-q}{p-R} = \frac{q}{p}$	$\frac{1}{p} + \frac{1}{q} = \frac{2}{R}$	$\frac{1}{p} + \frac{1}{q} = \frac{1}{f}$
	Lei	15	

Lenses	Lens Surface 1 I_1 O R_1 R_2	$\frac{n}{p_2} + \frac{1}{q_2} \frac{1-n}{R_2}$
	$ \begin{array}{c} & & \\ & & $	$\frac{1}{p} + \frac{1}{q} = \frac{1}{f}$
	$\left \begin{array}{c} & \begin{array}{c} & & 1 & & 1 \\ & & & p \\ \hline \end{array} \right \begin{array}{c} & & p \\ p_2 \end{array} \right \left \begin{array}{c} & & q_2 \end{array} \right \left \begin{array}{c} & & 1 \\ & & & 1 \end{array} \right $	$\frac{1}{p_1} + \frac{n}{q_1} = \frac{n-1}{R_1}$
	$\frac{1}{f} = (n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)$	

Variables	θ = angle between principle axis an	d line of reflection	$\alpha = angle$
	θ_1 = angle of incidence	θ_2 = angle of refrac	tion $f =$ frequency
	v_1 = speed of light in 1 st medium	v_2 = speed of light	in 2^{nd} medium $v =$ velocity
	c_{vacuum} = speed of light in a vacuum	n d	c_{medium} = speed of light in a medium
	λ = wavelength of light in vacuum		$\lambda_1 =$ wavelength in 1 st medium
	λ_2 = wavelength in 2 nd medium $n = index$		n = index of refraction
	$n_1 =$ index of refraction of 1 st media	um <i>i</i>	$i_2 = $ index of refraction of 2^{nd} medium
	5 0	h' = image height	M = lateral magnification
		q = image distance	R = radius of curvature
	1/f = 1/focal length	$R_1 \& R$	P_2 = radii of spherical surface
	p_1 = distance between object and 1	st lens	p_2 = distance between object and 2^{nd} lens
	q_1 = image distance from surface 1	(q_2 = image distance from surface 2