Summary of Tests for Series of Constant Terms $\sum_{u_n}^{+\infty} U_n$

	n=1
CONVERGENT $\sum U_n$	DIVERGENT $\sum U_n$
	$\lim U_n \neq 0$
	$n \rightarrow +\infty$
Geometric Series $+\infty$	Geometric Series $+\infty$
$s = \underline{a}$ $\sum ar^{n-1}$ where $ r < 1$	$\sum ar^{n-1}$ where $ r \ge 1$
1 - r $n=1$	n=1
\cdot $\sum_{n=1}^{+\infty}$ 1 \cdot \cdot \cdot \cdot	$\cdot \sum_{i=1}^{+\infty} 1$
p-series $\sum_{n} \frac{1}{n^p}$ where $p > 1$	p-series $\sum_{i} \frac{1}{n^p}$ where $p \le 1$
n=1	n=1 (harmonic series when $p=1$)
Alternating series for which $\lim_{n \to \infty} U = 0$ and	
$ U < U $ $n \rightarrow \infty$	
$ O_n+1 \leq O_n \qquad n \rightarrow +\infty$	
Ratio Test: $\lim_{n \to 1^+} U_{n+1} = L < 1$	Ratio Test: $\lim_{n \to \infty} U_{n+1} = L > 1$
$n \rightarrow +\infty$ U _n	$n \rightarrow +\infty$ U_n
(absolute convergence)	$or = +\infty$
Inconclusive	if L = 1
Root Test: $\lim_{n \to \infty} \sqrt{ U_n } = L < 1$	Root Test: $\lim_{n \to \infty} \sqrt{ U_n } = L > 1 \text{ or } = +\infty$
$n \rightarrow +\infty$	$n \rightarrow +\infty$
(absolute convergence)	
Inconclusive	if L = 1
Comparison Test (positive terms):	Comparison Test (positive terms):
$U_n < V_n$ where $\sum_{n=1}^{+\infty} V_n$ is a known convergent	$U_n > V_n$ where $\sum_{n=1}^{+\infty} V_n$ is a known divergent
$\sum_{n=1}^{n}$ series.	$\sum_{n=1}^{n}$ series.
	11-1
Limit Comparison Test (positive terms):	Limit Comparison Test (positive terms):
$\lim \underline{U}_n = C > 0 \qquad +\infty$	$\lim \underline{U}_n = C > 0 \text{ and } \underline{+\infty}$
$n \rightarrow +\infty V_n \qquad \qquad$	$n \rightarrow +\infty V_n$ $\sum V_n$ diverges
converges n=1	or $= +\infty$ $n=1$
or = 0 \int	
Integral lest (positive terms):	Integral lest (positive terms):
$U_n = I(n)$, I continuous, $I > 0$, decreasing and	$U_n = I(n)$, I continuous, $I > 0$, decreasing and
J_1 f(x)dx converges	$J_1 f(x)dx$ diverges
Differs from a known convergent series only in	Differs from a known divergent series only in
first m terms.	first m terms.
	~** ~**
$\sum U = \sum CV$ where $C \neq 0$ constant and	$\sum_{i=1}^{\infty} II = \sum_{i=1}^{\infty} CV$ where $C \neq 0$ constant and
$\sum_{n=1}^{\infty} C_n - \sum_{n=1}^{\infty} C_n + \infty$	$\sum_{n=1}^{\infty} O_n - \sum_{n=1}^{\infty} O_n \text{ where } O \neq 0 \text{ constant and} +\infty$
$\sum V_n$ known convergent	$\sum V_n$ known divergent
n=1	
Sum of two convergent series (term by term)	Sum of a divergent series and a convergent
	series.